Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy
نویسندگان
چکیده
Predictive coding provides a computational paradigm for modeling perceptual processing as the construction of representations accounting causes sensory inputs. Here, we developed scalable, deep network architecture predictive that is trained using gated Hebbian learning rule and mimics feedforward feedback connectivity cortex. After training on image datasets, models formed latent in higher areas allowed reconstruction original images. We analyzed low- high-level properties such orientation selectivity, object selectivity sparseness neuronal populations model. As reported experimentally, increased systematically across ascending model hierarchy. Depending strength regularization factors, also from lower to areas. The results suggest rationale why experimental cortical hierarchy have been inconsistent. Finally, different classes became more distinguishable Thus, neural networks formulation can reproduce several associated with responses along visual
منابع مشابه
modification of nanoclay for improving the physico-mechanical properties of dental adhesives
هدف اصلی این مطالعه تهیه یک سامانه نوین چسب عاجی دندانی بر پایه نانورس پیوند شده با پلی متاکریلیک اسید، نانورس پیوند شده با پلی اکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی متاکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی اکریلیک اسید و نانورس پیوند شده با کیتوسان اصلاح شده با گلایسیدیل متاکریلات است. پیوند پلی متاکریلیک اسید و پلی اکریلیک اسید بر ری سطح نانورس در حضور و ...
The multiform motor cortical output: Kinematic, predictive and response coding.
Observing actions performed by others entails a subliminal activation of primary motor cortex reflecting the components encoded in the observed action. One of the most debated issues concerns the role of this output: Is it a mere replica of the incoming flow of information (kinematic coding), is it oriented to anticipate the forthcoming events (predictive coding) or is it aimed at responding in...
متن کاملDeep Predictive Coding Networks
The quality of data representation in deep learning methods is directly related to the prior model imposed on the representations; however, generally used fixed priors are not capable of adjusting to the context in the data. To address this issue, we propose deep predictive coding networks, a hierarchical generative model that empirically alters priors on the latent representations in a dynamic...
متن کاملPredictive coding as a model of response properties in cortical area V1.
A simple model is shown to account for a large range of V1 classical, and nonclassical, receptive field properties including orientation tuning, spatial and temporal frequency tuning, cross-orientation suppression, surround suppression, and facilitation and inhibition by flankers and textured surrounds. The model is an implementation of the predictive coding theory of cortical function and thus...
متن کاملHebbian neural networks and the emergence of minds
The goal of this work is to provide an overview of artificial neural networks and some of their emergent properties. The neural network model is briefly motivated from a biological point of view, and then the typical network architecture is introduced. A Back-Propagation learning rule is briefly explored using a simple code as an example of supervised learning, and Hebbian learning is introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2021
ISSN: ['1662-5188']
DOI: https://doi.org/10.3389/fncom.2021.666131